
Research Institute for Advanced Computer Science
NASA Ames Research Center

Queueing in Networks of Computers

Peter J. Denning

17 May 91

RIACS Technical Report TR-91.14

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188892) QUEUEING IN NETWORKS OF

COMPUTERS (Research Inst. for Advanced

Computer Science) 15 p CSCL 09B

G3/61

N92-I0308

Unclas
0043093

t

Queueing in Networks of Computers

Peter J. Denning

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report TR-91.14

17 May 91

The designers of networks of computers must assess the capacity of the network to complete work
within reasonable times. The utilization law, Little's law, forced-flow law, and response time formula
are simple tools that can be used to calculate throughput and response times of networks. Bottleneck
analysis can be used to calculate simple lower bounds on response time in terms of individual server
parameters and the load on the network as a whole. These simple results are important tools for all
users of scientific networks -- "back of the envelope" calculations can quickly reveal the effects of
distant servers on local throughput and response time.

This is a preprint of the column The Science of Computing for
American Scientist 79, No. 3 (May-June 1991).

Work reported herein was supported in part by Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association (USRA).

Queueing in Networks of Computers

Peter J. Denning

Research Institute for Advanced Computer Science

17 May 91

A major airline has set up a transaction system used by its ticket agents to sell seats on

its aircraft. The airline has authorized 1,000 agents around the country to make

reservations from their workstations. There is a "disk farm" -- a large collection of

magnetic-disk storage devices -- in New York that contains all the records of flights,

mutes, and reservations. On average, each agent issues a transaction against this

database once every 60 seconds. One of the disks contains a directory that is consulted

on every transaction to locate other disks containing the actual data; on average, each

transaction by an agent accesses the directory disk 10 times. The directory disk takes an

average of five milliseconds to service each request and it is busy 80 percent of the time.

How many transactions per hour are serviced nationwide on this system? What is

the average response time experienced by an agent in Los Angeles? What would happen

to response time if a new method of storing the directory reduced accesses to five per

transaction? What would happen to response time if the number of agents were doubled?

2/Queueing TR-91.14 (17 May 91)

These are typical questions relating to the capacity of a network of computers to

complete the work requested of it. Most people think that the answers cannot be

calculated without detailed knowledge of the system structure -- the locations and types

of the agents' workstations, the communication bandwidth between each workstation and

the disk farm, the number and types of disks in the farm, access patterns for the disks,

local processors within the farm, amount of random-access memory in the farm, the type

of operating system, the types of transactions that can be issued, and more. It may come

as a surprise, therefore, that the first two questions -- concerning throughtput and

response time -- can be answered precisely from the information given. For the changes

of configuration proposed in the third and fourth questions, reasonable estimates of

system behavior can be made from the available information and a few plausible

assumptions.

Servers and Transactions

A computer network is composed of a number of interconnected servers. Servers include

workstations, disks, processors, databases, printers, displays, and any other devices that

can carry out computational tasks. Each server receives and queues up messages from

other servers specifying tasks of the type that the receiving server is designed to carry out

- a typical message might ask a server to run a computationally intensive program, to

perform an input/output transaction, or to access a database. A transaction is a specified

sequence of tasks submitted to the network; when a server completes a particular task, it

deletes the request from its queue and sends a message to another server, requesting that

it perform the next task in the same transaction.

TR-91.14(17May91) Queueing/3

Measurements of servers are always conducted during a definite observation period.

Basic measures typically include event counters and timers. These and other measures

derived from them are called operational quantities. Invariant relations among

operational quantities that hold in every observation period are called operational laws.

By counting outgoing messages and by measuring the time that the queue is

nonempty, it is easy to measure the output rate X, the mean service time S, and the

utilization U of a server. These three empirical quantities satisfy the relation U=SX,

known as the Utilization Law (Figure 1). Similarly, by measuring the "space-time"

accumulated by queued tasks, it is easy to determine the mean queue length _" and the

mean response time R ; these quantities satisfy the relation _'=RX, known as Little's Law

(Figure 2).

The utilization law and Little's law are counterparts of well-known limit theorems

for stochastic queueing systems in a steady state. These theorems will usually be verified

in actual measurements, not because steady state has been attained, but because the

measured quantities obey the operational laws (1, 2).

The tasks making up a transaction can be regarded as a sequence of visits by the

transaction to the servers of the network. The average number of visits per transaction to

a particular server i is called the visit ratio Vi for that server; the server's output rate Xi

and the system's output rate X 0 satisfy the relation Xi =ViXo, known as the forced-flow

law (Figure 3). This remarkable law shows that knowledge of the visit ratios and the

output rate of any one server is sufficient to determine the output rates of every other

server and of the system itself. Moreover, any two networks with the same visit ratios

have the same flows no matter what is the interconnection structure among their servers.

4/Qucueing TR-91.14(17May 9I)

In a network, a server's output is a portion of the input to another server or of the

output of the system. It simplifies an analysis to assume that the input and output flows

of a server are identical and can be called the throughput -- a condition known as flow

balance. The definitions do not imply flow balance. In most real systems there is a

bound on the number of tasks that can be in the system at once; as long as the number of

completions at every server is large compared to this bound, the error introduced by

assuming flow balance will be negligible. For this reason, flow balance does not

generally introduce much error for practical systems.

When a network of servers receives all its requests from a finite population of N

users who each delay an average of Z seconds each until submitting a new transaction,

the response time for a request in the network satisfies the response-time formula

R = N/Xo-Z (Figure 3). This formula is exact for flow balance.

These formulas are sufficient to answer the the throughput and response time

questions posed earlier for the airline reservation network. We are given that each

transaction generates an average of 10 directory-disk requests, and so Vi =10 for the

server represented by the directory disk. The mean service time at the directory disk is

five milliseconds, so that Si=O.O05 seconds. The directory disk's utilization is 80

percent: Ui=0.8. Combining the forced-flow law and utilization law, we have for total

system throughput:

Xo = Xi/Vi " Ui/Vi Si = 0.8/(10x0.005) = 16 transactions per second

Thus the entire airline reservation system is processing 57,600 transactions per hour. The

response time experienced by any one of the 1,000 agents is

TR-91.14(17 May 91) Queueing/5

R = N/Xo-Z - 1000/16 - 60 = 2.5 seconds

Changing the Configuration

Consider next the two configuration questions. They ask for grounded speculations

about response time in a future measurement period having different conditions -- for

example, the directory disk visit ratio is reduced, or the number of agents is increased.

Since operational laws deal only with relations among quantities observed in a past

measurement period, they are not sufficient for making predictions. We must introduce

additional, forecasting assumptions, that extrapolate measured parameter values from the

past observation period into the future observation period; the laws can then be used to

calculate the response time expected in that future period.

One common type of forecasting assumption is that, unless otherwise specified, the

demands placed by transactions on servers, Vi, will be the same in the future period as

they were in the measurement period. Similarly, unless otherwise specified, the mean

service times, Si, which depend primarily on mechanical and electrical properties of

devices, will be the same. The utilizations, throughputs, and response times will change

when any of these parameters changes.

The first configuration question asks what happens if the directory search strategy is

changed so that transactions make only five accesses to the directory disk, half the

previous number. Now the paucity of information about the parameters of the entire

network limits the accuracy of the answer. There are two extremes. One possibility is

that some disk other than the directory disk is the bottleneck of the system: most of the

transactions axe queued there, and its utilization is near 100 percent. Under these

6/Queueing TR-91.14(17May91)

conditions,reducingthedemandfor thedirectorydiskwill haveanegligible effecton the

utilization andthroughputof thebottleneckdisk; theforced-flowlaw tells usthat the

overall throughputandresponsetime will thereforebeunchanged.

At theotherextreme,thedirectorydisk is thebottleneckof thesystem;halving its

demandwill doublesystemthroughput.For thenumbersgivenabove,theresponsetime

formula yields acalculatedresponsetimeof -28.75seconds.Theobviousabsurdityof a

negativeresponsetime -- signifying thatanswersarereceivedbeforequestionsareasked

-- indicatesthat thediskdirectory cannotbe thebottleneckafter demandon it is reduced

by half, evenif it werethe bottleneckoriginally. All wecansaywith the given

information andthegiven forecastingassumptionsis that halving thedemandfor the

directory diskwill reducetheresponsetime from 2.5 secondsto somesmallerbut still

nonzeroandnonnegativevalue. If the2.5-secondresponsetime is acceptable,this

proposedchangeof directory searchstrategywouldnot becosteffective.

Considerthesecondconfigurationquestion:whathappensto theresponsetime if

thenumberof agentsis doubled?Again, wearelimited by thelack of knowledgeof the

otherdisks. If thedirectory disk is thebottleneck,thendoubling the numberof agentsis

likely to increaseits utilization to 100%,giving a saturationvalueof throughput:

Xo = 1/Vi Si = 1/(10x0.005) = 20 transactions per second

With the response-time formula, these values yield:

R =N/Xo-Z = 2000/20 - 60 = 40 seconds

If the directory disk is not the bottleneck, some other server will have a smaller saturation

TR-91.14(17May91) Queueing/7

throughput, forcing response time to be longer than 40 seconds. Doubling the number of

agents would produce unacceptably high response time.

This example illustrates that bottleneck analysis is a recurrent theme in forecasts of

throughput and response time. Suppose that the visit ratios and mean service times are

known for all the servers and do not vary with N. Each server generates a potential

bottleneck that would limit the system throughput to 1/Vi Si, and would give a lower

bound to the response time of NVi Si-Z. Obviously the server with the largest value of

Vi Si gives the least upper bound on the throughput and is the real bottleneck. The

products Vi Si are sufficient to determine lower bounds on the response time as a function

of N (Figure 5.)

The operational laws coupled with bottleneck analysis offer a simple but powerful

method for performance analysis. For systems whose visit ratios and service times do

not vary with overall load, the products Vi Si -- the total service time requirement for

each server -- are sufficient to answer these questions. The methods can be extended to

yield efficient algorithms for computing throughput, response time, and mean queue

length at every server as a function of the load N on the system (1,2).

Operational analysis is not a replacement for traditional queueing theory; it is a

reinterpretation for the common case of measured data. Many of the steady-state limit

theorems of queueing theory turn into operational laws or formulas that hold for flow-

balanced networks.

The genesis of the operational interpretation was in the mid 1970s, when

performance analysts were discovering that the formulas of Markovian queueing systems

worked very well to predict utilizations, throughputs, and response times in real networks

8/Queueing TR-91.14 (17 May 91)

of computers, even though the Markovian assumptions were grossly violated. Jeffrey P.

Buzen proposed the operational hypothesis: many of the traditional steady-state queueing

formulas are also relations among observable quantities under simple and general

conditions (1). This hypothesis has been substantiated in practice and has become the

underpinning for a large number of computer programs that calculate performance

measures for networks of servers ranging from computers to manufacturing lines.

These simple results are important tools for all users of scientific networks -- "back

of the envelope" calculations can quickly reveal the effects of distant servers on local

throughput and response time.

References

1. Peter J. Denning and Jeffrey P. Buzen. 1978. "Operational analysis of queueing

networks." ACM Computing Surveys 10, 3 (September). 225-261.

2. Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.

1984. Quantitative System Performance. Prentice-Hall.

arrivals

I

Iololololo1°]
arrivals counter

Iololololo
timer B

A

1olololol°1°'1
completions counter C

completions
V

Figure I. Task-processingserveristhebasicelement ofa network ofcomputers.

Over an observationperiodoflengthT, thecounterA registersthe number of
arrivals,thecounterC recordsthenumber oftaskscompleted,and the timerB
measures thetotalbusy time (thetime when tasksare present).The utilizationof

theserverisU=B/T, theoutput rateisX=C/T, and the mean servicetime per
completed taskisS=B/C. Because B/T = (C /T)(B/C),we have theutilizationlaw:
U=XS.

T
v

t'-

ff}

..................iiJiiiiiiiiJYiiiYiii!211iiii

0 time, t _,_ T

Figure 2. Average response time of a server can be calculated from just a few

measurements of the system's performance. Let n (t) denote the number of tasks in

the server at time t. Let W denote the area under the graph of n (t) in the interval

from time 0 to time T; W is the number of task-seconds of accumulated waiting.

The mean number of tasks at the server is E=W/T, and the mean response time per
completed task is R =W/C. Because WiT = (C /T)(W /C), we have Little's Law:

K=XR. The mean service time S and the mean response time R are not the same; R
includes queueing delay as well as service time.

observation

point

Xo C
0

i1|

system of servers

V i

server i

C

vj

server

cj
xj

J

V k

Figure 3. Flow of transactions through a network of servers can be calculated from
a few selected measurements of performance. Here the transaction visits servers i
and k once each and visits server j twice. Over an observation period, Co

transactions are completed by the system. The average number of tasks per
transaction for server i is Vi =Ci/C 0; Vi is called the visit ratio because each task is
regarded as a "visit" by the transaction to the server. Because
Ci/T = (Ci/Co)/(Co/T), we have the forced-flow law: Xi = ViXo. This law says that
the task flow at one point of the system determines the task flows everywhere. This
law holds regardless of the interconnections among the servers; two networks with
with the same visit ratios will have the same flows.

Z

or

qt

t

q

ml

X 0

y

o

p

R

thinkers waiters

Figure 4. Users of a transaction system alternate between periods of "thinking" and

periods of "waiting" for a response from the system. The total number of users .-

thinkers and waiters -- is N. The average response time per transaction is R and the

average thinking time is Z. Little's Law says says that the mean number of active

users in an entire system is equal to themean response time of the system multiplied

by the flow through the system. These three quantities are, respectively, N,R +Z,

and X0. Solving for the response time -- or in other words the average period spent

waiting -- we obtain the response-time formula: R = N/Xo - Z. Since the system

includes a fixed number of thinking and waiting users, this formulation assumes one

system arrival for each system completion (flow balance).

/,,,,' ,,,,"Nqq-z

/ .,' '

#1 ## #

• " I

• •

• 1 •O ••#

R(N) ,,"

_',,' / ,," NV.S. -Z
/ ," ., ,, J J

'_ ,., ,," R(i)

• l ••• #•S

• ••

S S ••

I # •

I I #

1
number of users, N _

Figure 5. Bottleneck analysis shows how the response time changes as function of

N. When N-l, the single user's jobs encounter no queueing delays from other jobs,

whence R (1) = V 1S I+...+VKSK, where K is the number of servers. Combining the

utilization and forced-flow laws, X0 = Xi/Vi = Ui/Vi Si < 1/Vi Si since Ui _<1. Thus,

R (N) > NViS i - Z for all i. Each of these lines is a potential asymptote for R (N)

with large N. The actual asymptote is determined by the largest of the potential

asymptotes. Taking server b (for bottleneck) to be the one with largest Vi Si, we

have R (iV) > NVbS b - Z. The bottleneck analysis assumes that the products ViSi

do not vary with N.

